Pearson Edexcel

Mark Scheme (Results)

October 2020

Pearson Edexcel International Advanced Level In Chemistry (WCH14)
Paper 1: Rates, Equilibria and Further Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020
Publications Code WCH14_01_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Answer	Mark
$\mathbf{1}$	The only correct answer is C (quenching and titrating with acid)	(1)
	A is incorrect because bromine is coloured	
	B is incorrect because ions are produced during the reaction	
D is incorrect because carbon dioxide is a gas produced in the reaction		

| Question
 Number | Answer | Mark |
| :--- | :--- | :---: | :---: |
| $\mathbf{2}$ | The only correct answer is B (0 2) | |
| | A is incorrect because experiments 1 and 2 show the order for Z is 2
 C incorrect because in experiments 3 and 2 doubling the concentration of Y results in no change in the rate, so Y is order 0.
 concentration of Y makes no difference to rate so is order 0. | |

Question Number	Answer	Mark
$\mathbf{3}$	The only correct answer is B (460 mins) C is incorrect because this value would be misreading the scale of the graph D is incorrect because this is half the time of the reaction on the graph	(1)

Question Number	Answer	Mark
$\mathbf{4 (a)}$	The only correct answer is A (the units for the rate constant are $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$)	
	B is incorrect because the reaction is second order overall C is not correct because the units of rate are always mol $\mathrm{dm}^{-3} \mathrm{~s}^{-1}$ \boldsymbol{D} is not correct because the rate would double as iodine is zero order	(1)

Question Number	Answer	Mark
$\mathbf{4 (b)}$	The only correct answer is D (the rate is unchanged when the hydrogen ion concentration is doubled)	
	A is incorrect because the rate of reaction does increase with temperature B is incorrect because the rate constant depends on the temperature and increases as temperature rises C is not correct because sodium hydroxide would neutralise some of the $\left[H^{+}\right]$catalyst so change rate	(1)

Question Number	Answer	Mark		
$\mathbf{5}$	The only correct answer is D (2-bromo-2-methylpropane)			
	\boldsymbol{A} is incorrect because this is a primary bromoalkane and $R B r$ is most likely to be tertiary			
\boldsymbol{B} is incorrect because this is a secondary bromoalkane and $R B r$ is most likely to be tertiary				
	C is incorrect because this is a primary bromoalkane and RBr is most likely to be tertiary		\quad	(1)
:---:				

Question Number	Answer	Mark		
$\mathbf{6}$	The only correct answer is B $\left(\Delta S_{\text {surroundings is positive })}\right.$			
	\boldsymbol{A} is incorrect because ΔH is negative for an exothermic reaction			
C is incorrect because $\Delta S_{\text {system }}$ is positive as a gas is being formed				
	D is incorrect because as both $\Delta S_{\text {system }}$ and $\Delta S_{\text {surroundings }}$ are positive so $\Delta S_{\text {total }}$ will be positive		\quad	(1)
:---:				

Question Number	Answer	Mark
7	The only correct answer is $\mathbf{A}\left(K_{\mathrm{c}}=\left(K_{\mathrm{c}}^{\prime}\right)^{2}\right)$	
	\boldsymbol{B} is incorrect because this is not true as K_{c}^{\prime} must be squared	
	\boldsymbol{C} is incorrect because this is not true as K_{c}^{\prime} must be squared not multiplied by 2	
	\boldsymbol{D} is incorrect because this is not true as K_{c}^{\prime} must be squared not square rooted	

Question Number	Answer	Mark
$\mathbf{8}$	The only correct answer is B (4.47) \boldsymbol{A} is incorrect because this answer assumes the concentration of ethanoate ion = concentration of hydrogen ion (as it would be in a weak acid calculation) C is incorrect because this answer is -logKa so does not consider the concentrations \boldsymbol{D} is incorrect because this answer is $-\log \left(2 x K_{a}\right)$ which has the concentrations upside down	

Question Number	Answer	Mark
9 (a)	The only correct answer is D \boldsymbol{A} is incorrect because, if the graph starts or finishes at a pH of about 1, a strong acid is present \boldsymbol{B} is incorrect because, if the graph starts or finishes at a pH of about 1, a strong acid is present C is incorrect because, if the graph starts or finishes at a pH of about 1, a strong acid is present	(1)

| Question
 Number | Answer |
| :--- | :--- | :--- | :--- |
| $\mathbf{9 (b)}$ | The only correct answer is C |
| | A is incorrect because the mid-point of the vertical portion of the graph is at $p H=7$ |
| | B is incorrect because the mid-point of the vertical portion of the graph is at $p H=7$ |
| | D is incorrect because the mid-point of the vertical portion of the graph is at $p H>7$ |

| Question
 Number | Answer |
| :--- | :--- | :--- |
| $\mathbf{9}$ (c) | The only correct answer is A
 B is incorrect because the range of colour change for bromothymol blue (6.0-7.6) is not within the vertical portion of the
 graph
 C is incorrect because the range of colour change for phenol red (6.8-8.4) is not within the vertical portion of the graph
 D is incorrect because the range of colour change for thymol blue (acid) (1.2-2.8) is not within the vertical portion of the
 graph |

Question Number	Answer	Mark
10	The only correct answer is \mathbf{A} ()	(1)
	\boldsymbol{B} is incorrect because the arrow from the $C=O$ should go to O not C	
	C is incorrect because the dipole for the $C=O$ has been reversed	
	\mathbf{D} is incorrect because the arrow should go from : CN^{-}not to it	

Question Number	Answer	Mark
$\mathbf{1 1}$	The only correct answer is B $\left(\mathrm{CHI}_{3}\right)$	(1)
	A is incorrect because there should be 3I not 3H attached to the C	
	C is incorrect because this is the product of the reaction between iodine and propanone in acidic conditions	
D is incorrect because this is an intermediate during the reaction between iodine and propanone		

Question Number	Answer	Mark
$\mathbf{1 2}$	The only correct answer is $\mathbf{C}\left(\mathrm{CH}_{3} \mathrm{CONH}_{2}\right)$	(1)
	\boldsymbol{A} is incorrect because this is formed by the initial reaction between the two	
	\boldsymbol{B} is incorrect because this is formed by the reaction between HCl and methylamine	\boldsymbol{D} is incorrect because this is the organic product of the reaction between the two

Question Number	Answer	Mark
$\mathbf{1 3}$	The only correct answer is C (Ethyl ethanoate, $\left.\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$	(1)
	A is incorrect because this has a percentage of 40%	
B is incorrect because this is isomeric to D so cannot be the answer		
D is incorrect because this is isomeric to B so cannot be the answer		

Question Number	Answer	Mark
$\mathbf{1 4}$	The only correct answer is B (a carboxylic acid)	
	A is incorrect because this will not react with magnesium	
	C is incorrect because this will not react with magnesium	

Question Number	Answer	Mark
$\mathbf{1 5}$ (a)	The only correct answer is C (add 2,4-dinitrophenylhydrazine (Brady's reagent) to each compound)	(1)
	\boldsymbol{A} is incorrect because neither would react	
\boldsymbol{B} is incorrect because neither would react		
\boldsymbol{D} is incorrect because neither would react		

Question Number	Answer	Mark
$\mathbf{1 5 ~ (b) ~}$	The only correct answer is B (warm each compound with acidified potassium dichromate(VI) solution)	(1)
	A is incorrect because neither would react	
	C is incorrect because neither would react	
D is incorrect because neither would react		

Question Number	Answer	Mark
$\mathbf{1 5}$ (c)	The only correct answer is D (add a few drops of each compound, drop by drop, to water)	(1)
	A is incorrect because as butanal would react but 2-methylpropan-2-ol would not	
	B is incorrect because as butanal would react but 2-methylpropan-2-ol would not	

Question Number	Answer		Additional guidance	Mark
	- Top line - Bottom line - Middle 2 lines	(1) (1) (2)	Penalise missing or incorrect state symbol once only Penalise lack of electrons or too few electrons once only Penalise the writing of the change for each step e.g. $\mathrm{Ca}(\mathrm{s}) \rightarrow \mathrm{Ca}(\mathrm{g})$ once only. Assume that the other substance is unchanged $\mathrm{Ca}^{2+}(\mathrm{g})+2 \mathrm{Cl}(\mathrm{~g})+2 \mathrm{e}^{(-)}$ Either $\mathrm{Ca}(\mathrm{~s})+2 \mathrm{Cl}(\mathrm{~g}) \quad \text { or } \quad \mathrm{Ca}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ any two of $\mathrm{Ca}^{+}(\mathrm{g})+2 \mathrm{Cl}(\mathrm{~g})+\mathrm{e}^{(-)} \quad \text { or } \quad \mathrm{Ca}(\mathrm{~g})+2 \mathrm{Cl}(\mathrm{~g})$ or $\mathrm{Ca}^{+}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{e}^{(-)}$or $\mathrm{Ca}^{2+}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{(-)}$ Allow TE from one line to the next, so penalising any error once only.	(4)

Question Number	Answer	Additional guidance	Mark
16(a)(ii)	- An equation linking enthalpy changes with correct signs and / or values - Multiplies atomisation of chlorine OR electron affinity of chlorine by 2 - Calculates final value of second ionisation energy of calcium with sign	Example of calculation: $\Delta \mathrm{H}_{1}=\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}+\Delta \mathrm{H}_{4}+\Delta \mathrm{H}_{5}+\Delta \mathrm{H}_{6}+\Delta \mathrm{H}_{7}$ OR $\Delta \mathrm{H}_{6}+\Delta \mathrm{H}_{7}=\Delta \mathrm{H}_{1}-\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{3}-\Delta \mathrm{H}_{4}-\Delta \mathrm{H}_{5}$ OR $\Delta \mathrm{H}_{5}=-\Delta \mathrm{H}_{4}-\Delta \mathrm{H}_{3}-\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{1}-\Delta \mathrm{H}_{7}-\Delta \mathrm{H}_{6}$ OR $\Delta \mathrm{H}_{5}=-590.0-178.2-((2 \mathrm{x}) 121.7)+-795.8--2258-((2 \mathrm{x})-348.8)$ Similar numerical expressions of the other equations also score $2 \text { x } 121.7 \text { / } 243.4 \text { / } 243$ OR $\begin{aligned} & 2 x-348.8 /-697.6 /-698 \\ & (+) 1148.2 /(+) 1148 /(+) 1150\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ ALLOW TE on all stages of calculation for max 2. Correct answer with no working scores (3) Ignore SF except 1 SF Common incorrect answers include: $-1148.2 /-1148 /-1150\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores (2) $(+) 799.4 /(+) 799 /(+) 780\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1 \times 348.8) \quad$ scores (2) $(+) 1269.9 /(+) 1270\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1 \times 121.7)$ scores (2) $(+) 921.1 /(+) 921 /(+) 920\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1 \times 348.8$ and 121.7) scores (1) (+)2512.7 (Changing sign of $\Delta \mathrm{H}_{6}+\Delta \mathrm{H}_{7}$ and no 2 x) scores (0)	(3)

Question Number	Answer	Additional guidance	Mark
16(b)	An explanation that makes reference to the following points: EITHER - Bonding is partially covalent / not purely ionic / has covalent character - Ca^{2+} ion is small (and highly charged) - Leading to polarisation / distortion in the electron cloud of the chloride $/ \mathrm{Cl}^{-}$(ion) / anion OR - Bonding is almost purely ionic / slightly covalent - Ca^{2+} is not sufficiently small (and highly charged) - To polarise the chloride / Cl^{-}(ion) very much / to distort the electron cloud of the chloride / Cl^{-}(ion)	Penalise the use of calcium and / or chlorine (atom) once only Ignore descriptions of possible macroscopic features of covalent character such as structures etc. Allow calcium ion is small and highly charged / has a high charge density Do not award chlorine Do not award distortion by calcium / calcium atom Allow virtually 100\% ionic Do not award purely ionic / 100 \% ionic calcium ion is not sufficiently small and highly charged / has too small a charge density Do not award calcium / calcium atom is not sufficiently small / charged Allow chloride (ion) is not very polarised / is not very polarisable Do not award chlorine Do not award chloride is not polarised / polarisable	(3)

Question Number	Answer	Additional guidance	Mark
16(c)	An explanation that makes reference to the following points: - (on descending the group) lattice enthalpy becomes less exothermic - as the radius of metal ion / M^{2+} ion / cation increases (and charge on ions remains the same / $2+$) - (down group) weaker forces of attraction between ions	Penalise mention specifically of atoms instead of ions once only Penalise mention specifically of molecules once only Award reverse arguments if clearly referring to ascending the group Ignore discussion of polarising power Allow less negative / less energy is released Ignore increases / decreases Allow "size" instead of "radius" Ignore atomic radius increases Allow correct formulae of cations Do not award just "charge density decreases" without explanation Allow less attraction to chloride ion Do not award just "weaker bonds" or "weaker bonding"	(3)

Question Number	Answer	Additional guidance	Mark
16(d)	- An expression linking enthalpy of solution, lattice enthalpy and hydration enthalpies - Value of $\Delta_{\text {sol }} H$	Example of calculation $\Delta_{\mathrm{sol}} H=-\Delta_{\mathrm{latt}} H+(\Sigma) \Delta_{\mathrm{hyd}} H$ OR $\Delta_{\mathrm{sol}} H=-(-2258)+(-1650)+(2 \mathrm{x}-364)$ $-120\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Correct answer with no working scores (2) $(+) 120 /(+) 244 /-4636\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \text { scores }(1)$	(2)

Question Number	Answer	Additional guidance	Mark
17(b)(ii)	• Five /5 (peaks)		(1)

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 7 (\text { (c)(ii) }}$	(Lithium tetrahydridoalumate(III) / lithium aluminium ALLOW hydride) / LiAlH AND in dry ether / diethyl ether / ethoxyethane (solvent)	Lithal ALLOW Sodium tetrahydridoborate / sodium borohydride AND Water / ethanol solvent	$\mathbf{(1)}$

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 7 (\text { (c)(iii) }}$	•Catalyst	Ignore mention of acid / homogeneous / proton donor	(1)
		Ignore additional words Do not award just 'proton donor' or donates hydrogen ions	

Question Number	Answer	Additional guidance	Mark
17(d)	An explanation that makes reference to the following points: - Isomer A (has the highest boiling temperature) - (Isomer A has the) only molecules held together by hydrogen bonding / Isomer A forms hydrogen bonds but E and F do not	In general ignore reference to other intermolecular forces (but see below) Allow it forms hydrogen bonds Ignore it forms hydrogen bonds with other compounds/substances Ignore comments about straight chain so stronger London forces Allow hydrogen bonding is stronger than London forces and/or permanent dipoles Allow just 'forms strong hydrogen bonds’	(3)

Question Number	Answer		Additional guidance	Mark
18(a)(i)	- Calculation of hydrogen ion concentration	(1)	Example of calculation	(2)
			$\left(\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}\right)$	
			$\left[\mathrm{H}^{+}\right]=0.074989 / 0.075 / 7.4989 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$	
			Do not award just $\left[\mathrm{H}^{+}\right]=10^{-1.125}$	
	- Calculation of hydroxide ion concentration	(1)	$\left(\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \div 0.074989\right)$	
			$\left[\mathrm{OH}^{-}\right]=1.3335 \times 10^{-13}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$	
			Allow $=1 \times 10^{-12.875}$	
			Allow 1 mark for correct unidentified concentrations whatever order they are given	
			Ignore SF except 1 SF	

| Question
 Number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- | :---: |
| 18(b)(ii) | An explanation that makes reference to the following points:
 - oxonium $/ \mathrm{H}_{3} \mathrm{O}^{+}$ion produced in first dissociation
 - (prevents further dissociation by) pushing second
 equilibrium to the left. | Allow hydronium / hydroxonium ion $/ \mathrm{H}^{+}$ | (2) |

Question Number	Answer	Additional guidance	Mark
18(c)(i)	- Correct expression for $\mathrm{K}_{\mathrm{a} 1}$		(1)
		$K_{\mathrm{a} 1}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}((\mathrm{aq}))\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}((\mathrm{aq}))\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}((\mathrm{aq}))\right]}$	
		Allow use of H^{+}instead of $\mathrm{H}_{3} \mathrm{O}^{+}$	
		Do not award the charge outside of the square bracket	

Question Number	Answer	Additional guidance	Mark
18(c)(ii)		Example of calculation:	(4)
	- Calculate hydrogen ion concentration (1)	$=10^{-\mathrm{pH}} / 10^{-1.2} / 0.063096 / 6.3096 \times 10^{-2} / 0.0631 / 6.31 \times 10^{-2}$	
		Do not award 0.0630 but TE can be awarded for the remaining marks	
		Allow TE for an incorrect expression for $K_{\mathrm{a} 1}$	
	- States $\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}((\mathrm{aq}))\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}((\mathrm{aq}))\right]$ or shown in the expression for $\mathrm{K}_{\mathrm{a} 1}$	$\begin{equation*} K_{\mathrm{a} 1}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}((\mathrm{aq}))\right]^{2}}{\left.\left[\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})\right)\right]} \tag{1} \end{equation*}$	
		$K_{\mathrm{a} 1}=\frac{(0.063096)^{2}}{0.500-0.063096}=\frac{0.0039811}{0.43690}$	
		$=0.0091121 / 9.1121 \times 10^{-3} / 0.00911 / 9.11 \times 10^{-3}$	
		ALLOW	
		Use of assumption $\left[\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})\right]=0.500$	
		$=0.0079621 / 7.9621 \times 10^{-3} / 0.00796 / 7.96 \times 10^{-3}$	
	- Calculates $K_{\mathrm{a} 1}$	Correct value with no working scores (3)	
	- Units (1)	$\mathrm{mol} \mathrm{dm}{ }^{-3}$	
		Correct answer with no working and correct units scores (4) Ignore SF except 1 SF but allow 0.5 for concentration	

Question Number	Answer	Additional guidance	Mark
18(d)	An explanation that makes reference to the following points:		(3)
	- The mixture contains a (large) reservoir / high concentration of both phosphate ions / of hydrogen phosphate and dihydrogen phosphate ions / of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$and HPO_{4}^{2-} Either - Added OH^{-}combines with H^{+}to form water / $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ AND Dihydrogen phosphate ion / $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$dissociates to form more $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightleftharpoons$ $\mathrm{HPO}_{4}^{2-}+\mathrm{H}^{+}$ Or Added OH^{-}reacts with dihydrogen phosphate ion (to form $\begin{equation*} \text { water) } / \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ - (pH changes very little because added OH^{-}is removed) and change in concentration of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$and HPO_{4}^{2-} is small / ratio [salt]/[acid] hardly changes	Allow large amount / abundance	
		For this mark to be scored at least one ionic equation is required	
		If the equilibrium is given allow 'added OH^{-}causes the equilibrium to move to the right'	
		Allow pH is unchanged	
		Allow ratio changes a little / changes slightly	
		Ignore there is no change in concentrations / the ratio is unchanged	

Section C

Question Number	Answer	Additional guidance	Mark
19(a)(i)	- Gives expression for $\Delta S^{\ominus}{ }_{\text {system }}$ - Calculation of value of $\Delta S^{\ominus}{ }_{\text {system }}$	Example of calculation $\begin{align*} & \Delta S_{\text {system }}^{\ominus}=(2 \times 192.3)-191.6-(3 \times 130.6) \tag{1}\\ & =-\mathbf{1 9 8 . 8} /-\mathbf{1 9 9}\left(\mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ Ignore SF except 1 SF but award -200 (2 SF) Award $-0.198 .8 /-0.199 /-0.20 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ but units must be given Allow $\mathrm{kJ} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ Do not award incorrect units Correct answer with no working scores (2) A positive version of the acceptable answer scores (1) $-0.2 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \text { scores (1) }$ Allow TE on an incorrect expression which contains either (2×192.3) or (3 $\times 130.6$)	(2)

Question Number	Answer	Additional guidance	Mark
19(a)(ii)	An explanation that makes reference to the following points: (Yes because....) - Disorder / number of ways of distributing energy quanta decreases - As number of molecules / moles / particles (of gas) decreases	Allow just "entropy decreases" Do not award just ' $\Delta S^{\ominus}{ }_{\text {system }}$ is negative' Allow 4 moles gives 2 moles / 4 molecules gives 2 molecules Do not award 2 molecules gives 1 molecule Allow TE on positive result in (a)(i), but must state answer is unexpected. Ignore no changes of states If (a)(i) is positive and no statement about expectation is made max (1) Positive answer expected scores (0)	(2)

Question Number	Answer		Additional guidance	Mark
19(a)(iii)	- Use of $\Delta S_{\text {surroundings }}=-\Delta H / T$ - Calculates $\Delta S_{\text {surroundings }}$	(1) (1)	Example of calculation: $\begin{aligned} & \Delta S_{\text {surroundings }}=-(-110.2 \times 1000) \div 700 \\ & =(+) 157.4 / 157\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \end{aligned}$ OR $=(+) 0.1574 / 0.157 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ Allow TE on incorrect equation with recognisable error, e.g. transfer error of value for $\Delta \mathrm{H}$ or use of incorrect temperature. Do not award incorrect units Ignore SF except 1 SF Correct answer with no working scores (2) Correct value with negative sign scores (1)	(2)

Question Number	Answer	Additional guidance	Mark
19(a)(iv)	- Finds $\Delta S_{\text {system }}$	Example of calculation $\begin{aligned} \left(\Delta S_{\text {system }}\right. & \left.=\Delta S_{\text {total }}-\Delta S_{\text {surroundings }}\right) \\ & =(-78.7-157.4)) \\ & =-236.1 /-236\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \end{aligned}$ OR $=-0.2361 /-0.236\left(\mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ Allow -235.7 if $\Delta S_{\text {surroundings }}=157 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ -238.7 if $\Delta S_{\text {surroundings }}=160 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ TE from (a)(iii) Ignore SF except 1 SF	(1)

| Question
 Number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- | :---: |
| $\mathbf{1 9 (a) (v)}$ | This question assesses a student's ability to show a coherent and logically
 structured answer with linkages and fully-sustained reasoning. | Guidance on how the mark scheme should be
 applied:
 The mark for indicative content should be added to
 the mark for lines of reasoning. For example, an
 answer with five indicative marking points that is
 partially structured with some linkages and lines of
 reasoning scores 4 marks (3 marks for indicative
 content and 1 mark for partial structure and some
 linkages and lines of reasoning).
 Ifructured awarded for indicative content and for how the answer is of reasoning.
 If there are no linkages between points, the same
 five indicative marking points would yield an
 overall score of 3 marks (3 marks for indicative
 content and no marks for linkages). | (6) |

Question Number	Answer	Additional guidance	Mark
19(b)(i)	- Correct expression for K_{p}	$K_{\mathrm{p}}=\frac{\mathrm{pp}\left(\mathrm{NH}_{3}\right)^{2}}{\operatorname{pp}\left(\mathrm{~N}_{2}\right) \mathrm{pp}\left(\mathrm{H}_{2}\right)^{3}}$ Other formats are acceptable but must have a p or pp. Accept capital P Do not award use of square brackets, e.g. [N_{2}]	(1)

Question Number	Answer		Additional guidance	Mark
19(b)(ii)			Example of calculation	(3)
	- Calculates partial pressure of ammonia	(1)	$\mathrm{ppNH}_{3}=(255-25-150)=80 \text { (atm) }$	
	- Calculates value of K_{p}	(1)	$K_{\mathrm{p}}=\left((80)^{2} /(25)(150)^{3}\right)=\left(7.5851852 \times 10^{-5}\right)$	
			$=7.5852 \times 10^{-5}$ Ignore SF except 1 SF	
			TE on incorrect ppNH_{3} and on equation in (i)	
	- States units	(1)	atm^{-2}	
			TE for units on incorrect equation in (i)	

Question Number	Answer	Additional guidance	Mark
19(b)(iii)	An explanation that makes reference to the following points: - $\left(K_{\mathrm{p}}\right)$ remains the same - Fraction / quotient / Q / Q_{p} / apparent value of K_{p} decreases in value (when pressure increases) - so equilibrium shifts to right hand side (to return K_{p} to its original value / to keep K_{p} constant)	Allow partial pressures of denominator / N_{2} and H_{2} increases more than the numerator / NH_{3} Ignore use of Le Chatelier’s Principle Must be linked to Q_{p} returning to the value of K_{p} not as a result of Le Chatelier's Principle Allow produces more ammonia (so K_{p} is constant / returns to original value)	(3)

(Total for Question $19=20$ marks)
(Total for Section C = 20 marks)
Total for Paper = $\mathbf{9 0}$ marks

